Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher.
Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?
Some links on this page may take you to non-federal websites. Their policies may differ from this site.
-
ABSTRACT A key challenge in conducting comparative analyses across social units, such as religions, ethnicities, or cultures, is that data on these units is often encoded in distinct and incompatible formats across diverse datasets. This can involve simple differences in the variables and values used to encode these units (e.g., Roman Catholic is V130 = 1 vs. Q98A = 2 in two different datasets) or differences in the resolutions at which units are encoded (Maya vs. Kaqchikel Maya). These disparate encodings can create substantial challenges for the efficiency and transparency of data syntheses across diverse datasets. We introduce a user‐friendly set of tools to help users translate four kinds of categories (religion, ethnicity, language, and subdistrict) across multiple, external datasets. We outline the platform's key functions and current progress, as well as long‐range goals for the platform.more » « less
-
Scientists and policymakers are increasingly leveraging complex, multi-scale data from diverse, worldwide sources to understand the causes and consequences of economic development, social stratification, climate change, cultural diversity, and violent conflict. This work frequently requires integrating data across diverse datasets by complex, dynamic categories (e.g., ethnicities, languages, religions, subdistricts). However, different datasets encode corresponding categories in disparate formats and at different resolutions (e.g., Guatemala Indigenous vs. Maya vs. K’iche’). These diverse encodings must be translated across datasets before bringing them together for analysis. At global scales across thousands of categories, the combinatorial complexity creates thorny challenges for manual reconciliation and for transparent documentation and sharing of researcher decisions. There is a need to investigate direct and uncomplicated ways to support search and explore the semantics for complex and diverse datasets.We design and deploy such a tool, CatMapper, to support semantic discovery through exploration and manipulation for large, complex and diverse datasets. CatMapper enables exploring contextual information about specific categories, translating new sets of categories from existing datasets and published studies, identify and integrating novel combinations of datasets for researchers’ custom needs, including automatically generated syntax to merge datasets of interest, and publishing and sharing merging templates for public re-use and open science. CatMapper does not store observational data. Rather, it is a dynamic, interactive dictionary of keys to help users integrate observational data from diverse external datasets in disparate formats, thereby complementing and leveraging a fast-growing ecology of datasets storing observational data. We have conducted heuristic evaluation on CatMapper usability. Results shed lights on enriching semantic data discovery.more » « less
-
Archaeologists have long recognized that spatial relationships are an important influence on and driver of all manner of social processes at scales from the local to the continental. Recent research in the realm of complex networks focused on community detection in human and animal networks suggests that there may be certain critical scales at which spatial interactions can be partitioned, allowing researchers to draw potential boundaries for interaction that provide insights into a variety of social phenomena. Thus far, this research has been focused on short time scales and has not explored the legacies of historic relationships on the evolution of network communities and boundaries over the long-term. In this study, we examine networks based on material cultural similarity drawing on a large settlement and material culture database from the U.S. Southwest/Mexican Northwest (ca. 1000–1450 CE) divided into a series of short temporal intervals. With these temporally sequenced networks we: 1) demonstrate the utility of network community detection for partitioning interactions in geographic space, 2) identify key transitions in the geographic scales of network communities, and 3) illustrate the role of previous network configurations in the evolution of network communities and their spatial boundaries through time.more » « less
-
Archaeologists cannot observe face-to-face interactions in the past, yet methods derived from the analyses of social networks are often used to make inferences about patterns of past social interactions using material cultural remains as a proxy. We created the ArchMatNet agent-based model to explore the relationship between networks built from archaeological material and the past social networks that generated them. It was designed as an abstract model representing a wide variety of social systems and their dynamics: from hunter-gatherer groups to small-scale horticulturalists. The model is highly flexible, allowing agents to engage in a variety of activities (e.g., group hunting, visiting, trading, cultural transmission, migration, seasonal aggregations,etc.), and includes several parameters that can be adjusted to represent the social, demographic and historical dynamics of interest. This article examines how sensitive the model is to changes in these various parameters, primarily by relying on the one-factor-at-a-time (OFAT) approach to sensitivity analysis. Our purpose is for this sensitivity analyses to serve as a guide for users of the model containing information on how the model works, the types of agents and variables included, how parameters interact with one another, the model outputs, and how to make informed choices on parameter values.more » « less
An official website of the United States government
